7,180 research outputs found

    Locating the critical end point using the linear sigma model coupled to quarks

    Full text link
    We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.Comment: 8 pages, 2 figures, conference paper from ISMD 201

    Shadowing of gluons in perturbative QCD: A comparison of different models

    Get PDF
    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that in the kinematic region appropriate to RHIC experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to LHC, there is a sizable difference between predictions of the different models.Comment: 11 pages, 4 figure

    Boundary and expansion effects on two-pion correlation functions in relativistic heavy-ion collisions

    Get PDF
    We examine the effects that a confining boundary together with hydrodynamical expansion play on two-pion distributions in relativistic heavy-ion collisions. We show that the effects arise from the introduction of further correlations due both to collective motion and the system's finite size. As is well known, the former leads to a reduction in the apparent source radius with increasing average pair momentum K. However, for small K, the presence of the boundary leads to a decrease of the apparent source radius with decreasing K. These two competing effects produce a maximum for the effective source radius as a function of K.Comment: 6 pages, 5 Eps figures, uses RevTeX and epsfi

    Nuclear shadowing from exclusive quarkonium photoproduction at the BNL RHIC and CERN LHC

    Full text link
    The photonuclear production of vector mesons in ultraperipheral heavy ion collisions is investigated within the collinear approach using different parameterizations for the nuclear gluon distribution. The integrated cross section and the rapidity distribution for the AAVAAAA \to V AA (V=J/Ψ,ΥV = J/\Psi, \Upsilon) process are computed for energies of RHIC and LHC. A comparison with the recent PHENIX data on coherent production of J/ΨJ/\Psi mesons is also presented. We demonstrate that the study of the exclusive quarkonium photoproduction can be used to constrain the nuclear effects in the gluon distribution.Comment: 8 pages, 4 figures, 2 tables. Version to be published in Physical Review

    The Wilson renormalization group for low x physics: towards the high density regime

    Full text link
    We continue the study of the effective action for low xx physics based on a Wilson renormalization group approach. We express the full nonlinear renormalization group equation in terms of the average value and the average fluctuation of extra color charge density generated by integrating out gluons with intermediate values of xx. This form clearly exhibits the nature of the phenomena driving the evolution and should serve as the basis of the analysis of saturation effects at high gluon density at small xx.Comment: 14 pages, late

    Density and expansion effects on pion spectra in relativistic heavy-ion collisions

    Get PDF
    We compute the pion inclusive momentum distribution in heavy-ion collisions at AGS energies, assuming thermal equilibrium and accounting for density and expansion effects at the time of decoupling. We compare to data on mid rapidity charged pions produced in central Au + Au collisions and find a very good agreement. The shape of the distribution at low mtmm_t-m is explained in part as an effect arising from the high mean pion density achieved in these reactions. The difference between the positive and negative pion distributions in the same region is attributed in part to the different average yields of each kind of charged pions.Comment: Minor changes, typo in Fig. 2b corrected, version to appear in Phys. Rev.
    corecore